Natural-language-toolkit-text-classification
自然言語ツールキット-テキスト分類
テキスト分類とは何ですか?
名前が示すように、テキスト分類は、テキストまたはドキュメントの一部を分類する方法です。 しかし、ここでなぜテキスト分類子を使用する必要があるのかという疑問が生じますか? ドキュメントまたはテキストの一部での単語の使用法を調べると、分類子はどのクラスラベルを割り当てるかを決定できます。
バイナリ分類子
名前が示すように、バイナリ分類子は2つのラベルを決定します。 たとえば、正または負。 この場合、テキストまたはドキュメントは、どちらか一方のラベルにすることも、両方にすることもできません。
マルチラベル分類子
バイナリ分類子とは逆に、マルチラベル分類子は1つ以上のラベルをテキストまたはドキュメントに割り当てることができます。
ラベル付きとラベルなしの機能セット
機能名から機能値へのキーと値のマッピングは、機能セットと呼ばれます。 ラベル付けされたフィーチャセットまたはトレーニングデータは、分類のトレーニングにとって非常に重要であり、後でラベル付けされていないフィーチャセットを分類できるようになります。
Labeled Feature Set | Unlabeled Feature Set |
---|---|
It is a tuple that look like (feat, label). | It is a feat itself. |
It is an instance with a known class label. | Without associated label, we can call it an instance. |
Used for training a classification algorithm. | Once trained, classification algorithm can classify an unlabeled feature set. |
テキスト特徴抽出
テキストの特徴抽出は、その名前が示すように、単語のリストを分類子が使用できる特徴セットに変換するプロセスです。 Natural Language Tool Kit(NLTK)は ‘dict’ スタイルの機能セットを想定しているため、テキストを ‘dict’ スタイルの機能セットに変換する必要があります。
Bag of Words(BoW)モデル
NLPで最も単純なモデルの1つであるBoWを使用して、テキストまたはドキュメントの一部から特徴を抽出し、MLアルゴリズムなどのモデリングで使用できるようにします。 基本的には、インスタンスのすべての単語から単語の存在機能セットを構築します。 この方法の背後にある概念は、単語の出現回数や順序については関係なく、単語が単語リストに存在するかどうかのみを気にするということです。
例
この例では、bow()という名前の関数を定義します-
次に、* bow()*関数を単語で呼び出します。 この関数をbagwords.pyという名前のファイルに保存しました。
出力
トレーニング分類子
前のセクションでは、テキストから特徴を抽出する方法を学びました。 これで、分類子をトレーニングできます。 最初で最も簡単な分類子は NaiveBayesClassifier クラスです。
単純ベイズ分類器
特定の機能セットが特定のラベルに属する確率を予測するには、ベイズの定理を使用します。 ベイズの定理の式は次のとおりです。
ここに、
- P(A | B)*-事後確率とも呼ばれます。 最初のイベントの確率、つまり その2番目のイベント、つまり Bが発生しました。
- P(B | A)*-2番目のイベントの確率です。 Bは、最初のイベントの後に発生します。 Aが発生しました。
- P(A)、P(B)*-事前確率とも呼ばれます。 最初のイベントの確率、つまり Aまたは2番目のイベント、つまり Bが発生します。
ナイーブベイズ分類器をトレーニングするために、NLTKの movie_reviews コーパスを使用します。 このコーパスには、 pos と neg という2つのカテゴリのテキストがあります。 これらのカテゴリは、それらでトレーニングされた分類器をバイナリ分類器にします。 コーパス内のすべてのファイルは2つで構成され、1つはポジティブな映画レビュー、もう1つはネガティブな映画レビューです。 この例では、分類子のトレーニングとテストの両方で、各ファイルを単一のインスタンスとして使用します。
例
分類器をトレーニングするには、[( featureset、label )]という形式のラベル付き機能セットのリストが必要です。 ここで、 featureset 変数は dict であり、labelは featureset の既知のクラスラベルです。 * movie_reviews というコーパスを使用する label_corpus()という名前の関数と、デフォルトで *bag of words になる feature_detector という名前の関数を作成します。 これは、フォーム\ {label:[featureset]}のマッピングを作成して返します。 その後、このマッピングを使用して、ラベル付きのトレーニングインスタンスとテストインスタンスのリストを作成します。
コレクションをインポート
上記の関数を使用して、マッピング \ {label:fetaureset} を取得します。 次に、 split という名前のもう1つの関数を定義します。これは、* label_corpus()*関数から返されたマッピングを受け取り、機能セットの各リストをラベル付きトレーニングとテストインスタンスに分割します。
では、これらの関数をコーパスで使用してみましょう。 movie_reviews −
出力
例
出力
例
出力
例
出力
- train()*クラスメソッドを使用して*NaïveBayesClassifier*をトレーニングしましょう-
出力
決定木分類器
もう1つの重要な分類子は、決定木分類子です。 ここでそれを訓練するために DecisionTreeClassifier クラスはツリー構造を作成します。 このツリー構造では、各ノードは機能名に対応し、ブランチは機能値に対応しています。 そして枝を下って、私たちは木の葉に行きます、すなわち 分類ラベル。
決定木分類器をトレーニングするために、同じトレーニングとテスト機能を使用します。 train_feats および test_feats 、 movie_reviews コーパスから作成した変数。
例
この分類子をトレーニングするには、次のように* DecisionTreeClassifier.train()*クラスメソッドを呼び出します-
出力
最大エントロピー分類子
もう1つの重要な分類子は MaxentClassifier で、条件付き指数分類子*または*ロジスティック回帰分類子*とも呼ばれます。 ここでそれをトレーニングするために、 *MaxentClassifier クラスは、ラベル付けされた特徴セットをエンコーディングを使用してベクトルに変換します。
決定木分類器をトレーニングするために、同じトレーニングとテスト機能を使用します。 * train_feats と *test_feats 、 movie_reviews コーパスから作成した変数。
例
この分類子をトレーニングするには、次のように* MaxentClassifier.train()*クラスメソッドを呼び出します-
出力
Scikit-learn分類子
最良の機械学習(ML)ライブラリの1つはScikit-learnです。 それは実際にはさまざまな目的のためのあらゆる種類のMLアルゴリズムを含んでいますが、それらはすべて次のように同じフィット設計パターンを持っています-
- モデルをデータに適合させる
- そのモデルを使用して予測を行います
ここでは、scikit-learnモデルに直接アクセスするのではなく、NLTKの SklearnClassifier クラスを使用します。 このクラスは、NLTKのClassifierインターフェースに準拠させるためのscikit-learnモデルのラッパークラスです。
- ステップ1 *-最初に、以前のレシピで行ったようにトレーニング機能を作成します。
- ステップ2 *-次に、Scikit-learnアルゴリズムを選択してインポートします。
ステップ3 *-次に、選択したアルゴリズムで *SklearnClassifier クラスを構築する必要があります。
ステップ4 *-最後に、トレーニング機能を使用して *SklearnClassifier クラスをトレーニングします。
以下のPythonレシピにこれらのステップを実装しましょう-
出力
精度と再現率の測定
さまざまな分類子をトレーニングしながら、それらの精度も測定しました。 しかし、正確性とは別に、分類子を評価するために使用される他の多くのメトリックがあります。 これらのメトリックのうちの2つは、「精度」と「再現率」です。
例
この例では、以前にトレーニングしたNaiveBayesClassifierクラスの精度と再現率を計算します。 これを実現するために、2つの引数をとるmetrics_PR()という名前の関数を作成します。1つはトレーニング済み分類子で、もう1つはラベル付きテスト機能です。 両方の引数は、分類子の精度を計算するときに渡したものと同じです-
この関数を呼び出して精度と再現率を見つけましょう-
出力
例
出力
例
出力
例
出力
分類子と投票の組み合わせ
分類子を組み合わせることは、分類パフォーマンスを改善する最良の方法の1つです。 そして投票は、複数の分類子を組み合わせる最良の方法の1つです。 投票には、奇数の分類子が必要です。 次のPythonレシピでは、3つの分類子、つまりNaiveBayesClassifierクラス、DecisionTreeClassifierクラス、MaxentClassifierクラスを組み合わせます。
これを実現するために、voting_classifiers()という名前の関数を次のように定義します。
この関数を呼び出して、3つの分類子を組み合わせて精度を見つけましょう-
出力
例
出力
上記の出力から、結合された分類子が個々の分類子よりも高い精度を得たことがわかります。